Why does it matter whether we state definitions carefully when we all know what particular geometric figures look like? What does it mean to say that a reflection is a transformation―a function? How does the study of transformations and matrices in high school connect with later work with vector spaces in linear algebra? How much do you know… and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organized around four big ideas, supported by multiple smaller, interconnected ideas―essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students―and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently. Move beyond the mathematics you expect your students to learn. Students who fail to get a solid grounding in pivotal concepts struggle in subsequent work in mathematics and related disciplines. By bringing a deeper understanding to your teaching, you can help students who don’t get it the first time by presenting the mathematics in multiple ways.
show more...Just click on START button on Telegram Bot