Random Matrix Methods for Machine Learning

Random Matrix Methods for Machine Learning

Author
Romain Couillet, Zhenyu Liao
Publisher
Cambridge University Press
Language
English
Edition
1
Year
2022
Page
408
ISBN
1009123238,9781009123235
File Type
pdf
File Size
9.5 MiB

This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book