Index theory, eta forms, and Deligne cohomology

Index theory, eta forms, and Deligne cohomology

Author
Ulrich Bunke
Publisher
Amer Mathematical Society
Language
English
Year
2009
Page
134
ISBN
0821842846,978-0-8218-4284-3
File Type
pdf
File Size
828.3 KiB

This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary co-dimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book