The fundamental property of compact spaces---that continuous functions defined on compact spaces are bounded---served as a motivation for E. Hewitt to introduce the notion of a pseudocompact space. The class of pseudocompact spaces proved to be of fundamental importance in set-theoretic topology and its applications. This clear and self-contained exposition offers a comprehensive treatment of the question, When does a group admit an introduction of a pseudocompact Hausdorff topology that makes group operations continuous? Equivalently, what is the algebraic structure of a pseudocompact Hausdorff group? The authors have adopted a unifying approach that covers all known results and leads to new ones. Results in the book are free of any additional set-theoretic assumptions.
show more...Just click on START button on Telegram Bot