Invariants Under Tori of Rings of Differential Operators and Related Topics

Invariants Under Tori of Rings of Differential Operators and Related Topics

Author
Ian M. Musson, M. Van Den Bergh
Publisher
Amer Mathematical Society
Language
English
Year
1998
Page
85
ISBN
0821808850,9780821808856
File Type
djvu
File Size
809.4 KiB

If $G$ is a reductive algebraic group acting rationally on a smooth affine variety $X$, then it is generally believed that $D(X)^G$ has properties very similar to those of enveloping algebras of semisimple Lie algebras. In this book, the authors show that this is indeed the case when $G$ is a torus and $X=k^r\times (k^*)^s$. They give a precise description of the primitive ideals in $D(X)^G$ and study in detail the ring theoretical and homological properties of the minimal primitive quotients of $D(X)^G$. The latter are of the form $B^x=D(X)^G/({\mathfrak g}-\chi({\mathfrak g}))$ where ${\mathfrak g}= \textnormal{Lie}(G)$, $\chi\in {\mathfrak g}^\ast$ and ${\mathfrak g}-\chi({\mathfrak g})$ is the set of all $v-\chi(v)$ with $v\in {\mathfrak g}$. They occur as rings of twisted differential operators on toric varieties. It is also proven that if $G$ is a torus acting rationally on a smooth affine variety, then $D(X/\!/G)$ is a simple ring.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book