A classical topic in mathematical finance is the theory of portfolio optimization. Robert Merton's work from the early seventies had enormous impact on academic research as well as on the paradigms guiding practitioners. One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax. These lecture notes present some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero. An appealing feature of the consideration of transaction costs is that it allows us for the first time to reconcile the no arbitrage paradigm with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present lectures, which roughly reads as follows: For a fractional Brownian motion stock price model we always find a shadow price process for given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical finance. A publication of the European Mathematical Society (EMS). Distributed within the Americas by the American Mathematical Society.
show more...Just click on START button on Telegram Bot