This monograph presents developments in the abstract theory of topological dynamics, concentrating on the internal structure of minimal flows (actions of groups on compact Hausdorff spaces for which every orbit is dense) and their homomorphisms (continuous equivariant maps).
Various classes of minimal flows (equicontinuous, distal, point distal) are intensively studied, and a general structure theorem is obtained. Another theme is the ``universal'' approach - entire classes of minimal flows are studied, rather than flows in isolation. This leads to the consideration of disjointness of flows, which is a kind of independence condition. Among the topics unique to this book are a proof of the Ellis ``joint continuity theorem'', a characterization of the equicontinuous structure relation, and the aforementioned structure theorem for minimal flows.
Just click on START button on Telegram Bot