Geometry of Lengths, Areas, and Volumes Two-Dimensional Spaces

Geometry of Lengths, Areas, and Volumes Two-Dimensional Spaces

Author
Cannon, James W.
Publisher
American Mathematical Society
Language
English
Year
2017
Page
133
ISBN
9781470437145,1470437147,9781470443030,1470443031
File Type
pdf
File Size
1.2 MiB

This is the first of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology.The first volume begins with length measurement as dominated by the Pythagorean Theorem (three proofs) with application to number theory; areas measured by slicing and scaling, where Archimedes uses the physical weights and balances to calculate spherical volume and is led to the invention of calculus; areas by cut and paste, leading to the Bolyai-Gerwien theorem on squaring polygons; areas by counting, leading to the theory of continued fractions, the efficient rational approximation of real numbers, and Minkowski's theorem on convex bodies; straight-edge and compass constructions, giving complete proofs, including the transcendence of $e$ and $\pi$, of the impossibility of squaring the circle, duplicating the cube, and trisecting the angle; and finally to a construction of the Hausdorff-Banach-Tarski paradox that shows some spherical sets are too complicated and cloudy to admit a well-defined notion of area.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book