La topologie algébrique existe depuis plus d'un siècle comme branche à part entière dans le champ mathématique. Les noms de J F. Adams, H. Cartan, M. Atiyah, J. Milnor, P. Vogel ou J. Lannes sont connus du grand public. Mais c'est peut-être à H. Poincaré que revient le mérite d'avoir pressenti le premier l'importance de mettre les outils algébriques au service de la topologie. Les méthodes qu'elle a mises en oeuvre irradient un peu partout en mathématiques et en physique théorique, et ont permis de développer des outils sophistiqués, dont l'algèbre homologique n'est pas le moindre. Homotopie, homologie, CW-complexes, revêtements sont au centre de l'ouvrage.
L'auteur offre ici à ses lecteurs une introduction au sujet, écrite dans un mode impeccable, où le souci de la rigueur, de la précision et de la clarté n'a rien à envier à l'excellence de la langue, et à l'attention apportée au style. Cette rigueur, un peu libérée et détendue chez les spécialistes, est absolument indispensable pour le nouvel apprenti, qui se doit de tout démontrer et de ne rien laisser dans l'ombre ou dans le vague. Si Christian Leruste semble prendre son lecteur ou sa lectrice par la main, c'est pour l'amener très haut, et lui laisser le plaisir d'apprendre à chasser dans les diagrammes, à dévisser les espaces topologiques, à batifoler parmi les revêtements et enfin à gouverner ce grand cerf-volant, sans ficelles !
Cet ouvrage qui est l'oeuvre d'une vie et d'une expérience aiguisée par les années n'a peut-être pas d'équivalent dans la littérature mathématique qui introduit à la topologie algébrique. Il correspond à un cours de master I, réparti sur deux semestres, et contient un nombre considérable d'exemples et beaucoup d'exer-cices, corrigés avec le plus grand soin.
Just click on START button on Telegram Bot