Data-Driven Remaining Useful Life Prognosis Techniques: Stochastic Models, Methods and Applications

Data-Driven Remaining Useful Life Prognosis Techniques: Stochastic Models, Methods and Applications

Author
Hu, Chang-HuaSi, Xiao-ShengZhang, Zheng-Xin
Publisher
Springer Berlin Heidelberg
Language
English
Year
2017
Page
(XVII, 430 pages) : 104 illustrations, 84 illustrations en couleur
ISBN
9783662540305,3662540304
File Type
epub
File Size
8.6 MiB

This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based prognosis, residual storage life prognosis, and prognostic information-based decision-making.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book