Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery

Strengthening Deep Neural Networks: Making AI Less Susceptible to Adversarial Trickery

Author
Warr, Katy
Publisher
O'Reilly Media
Language
English
Edition
First edition
Year
2019
Page
250 p
ISBN
9781492044956,0869910000,9781492044901,1492044903,9781492044925,149204492X
File Type
epub
File Size
40.8 MiB

As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldnâ??t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNsâ??the algorithms intrinsic to much of AIâ??are used daily to process image, audio, and video data.
Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If youâ??re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book