Structural engineers must focus on a structure’s continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book also helps readers understand where the safety factors used come from and addresses the problems that arise from deviation from these factors. It also examines the question of what code is best to follow for a specific project: the American code, the British Standard, the Eurocode, or other local codes.
The author devotes an entire chapter to practical statistics methods and probability theory used in structural and civil engineering, both important for calculating the probability of structural failure (reliability analysis). The text addresses the effects of time, environmental conditions, and loads to assess consequences on older structures as well as to calculate the probability of failure. It also presents the effects of steel bar corrosion and column corrosion, and precautions to consider along with guides for design.
This book offers guidelines and tools to evaluate existing as well as new structures, providing all available methods and tests for assessing structures, including visual inspection and nondestructive testing for concrete strength. It also presents techniques for predicting the remaining service life of a structure, which can be used to determine whether to perform repairs or take other action. This practical guide helps readers to differentiate between and understand the philosophy of the various codes and standards, enabling them to work anywhere in the world. It will aid engineers at all levels working on projects from the design to the maintenance phase, increasing their grasp of structure behavior, codes and factors, and predicting service life.
Just click on START button on Telegram Bot