Mathematik 1 Beweisaufgaben: Beweise, Lern- und Klausur-Formelsammlung

Mathematik 1 Beweisaufgaben: Beweise, Lern- und Klausur-Formelsammlung

Author
Lutz Nasdala
Publisher
Springer Vieweg
Language
German
Edition
2
Year
2020
Page
588
ISBN
3658301597,9783658301590
File Type
pdf
File Size
6.4 MiB

Product Description Die Beweisaufgabensammlung richtet sich an angehende Ingenieure, die die im Rahmen einer Mathematik 1-Vorlesung eingeführten Formeln nicht nur anwenden, sondern selbst herleiten wollen. Zur Unterstützung dienen neben ausführlichen Lösungen die in einem Extrakapitel angegebenen Lösungshinweise: halbfertige Skizzen, Teilergebnisse, Nennung der Beweismethode oder eine Auflistung der relevanten Gleichungen. Bei umfangreicheren Herleitungen ist eine Aufteilung in mehrere Aufgaben vorgenommen worden.Für die 2. Auflage wurden 45 weitere Beweisaufgaben aufgenommen, viele aus dem Bereich der Geometrie, z. B. der Höhensatz des Euklid, Abstandsformeln oder ein Vergleich der verschiedenen Darstellungsarten einer Ebene. Neben der pq-Formel wird nun auch die abc-Formel hergeleitet, die Potenzgesetze werden durch Wurzelgesetze komplettiert, und es wird bewiesen, dass die Kubikwurzel sogar im Sattelpunkt streng monoton steigt. Es wird diskutiert, warum man 0 hoch 0 zu eins definieren sollte, die verschiedenen Darstellungsformen einer Parabel ineinander überführt und gezeigt, woher das Newton-Verfahren kommt.Die Beweise werden ergänzt durch zwei Formelsammlungen, mit denen sich eine typische Mathematik 1-Klausur lösen lässt. Die Gleichungen und Regeln der Lern-Formelsammlung sind von so elementarer Bedeutung, dass sie jeder Ingenieurstudent auswendig können sollte. Formeln und Lösungsstrategien, die aufgrund ihres etwas anspruchsvolleren Inhalts nicht jeder im Kopf haben muss, finden sich in der Klausur-Formelsammlung. From the Back Cover Die Beweisaufgabensammlung richtet sich an angehende Ingenieure, die die im Rahmen einer Mathematik 1-Vorlesung eingeführten Formeln nicht nur anwenden, sondern selbst herleiten wollen. Zur Unterstützung dienen neben ausführlichen Lösungen die in einem Extrakapitel angegebenen Lösungshinweise: halbfertige Skizzen, Teilergebnisse, Nennung der Beweismethode oder eine Auflistung der relevanten Gleichungen. Bei umfangreicheren Herleitungen ist eine Aufteilung in mehrere Aufgaben vorgenommen worden.Für die 2. Auflage wurden 45 weitere Beweisaufgaben aufgenommen, viele aus dem Bereich der Geometrie, z. B. der Höhensatz des Euklid, Abstandsformeln oder ein Vergleich der verschiedenen Darstellungsarten einer Ebene. Neben der pq-Formel wird nun auch die abc-Formel hergeleitet, die Potenzgesetze werden durch Wurzelgesetze komplettiert, und es wird bewiesen, dass die Kubikwurzel sogar im Sattelpunkt streng monoton steigt. Es wird diskutiert, warum man 0 hoch 0 zu eins definieren sollte, die verschiedenen Darstellungsformen einer Parabel ineinander überführt und gezeigt, woher das Newton-Verfahren kommt.Die Beweise werden ergänzt durch zwei Formelsammlungen, mit denen sich eine typische Mathematik 1-Klausur lösen lässt. Die Gleichungen und Regeln der Lern-Formelsammlung sind von so elementarer Bedeutung, dass sie jeder Ingenieurstudent auswendig können sollte. Formeln und Lösungsstrategien, die aufgrund ihres etwas anspruchsvolleren Inhalts nicht jeder im Kopf haben muss, finden sich in der Klausur-Formelsammlung.Der InhaltAllgemeine GrundlagenVektoralgebraFunktionen und KurvenDifferentialrechnungIntegralrechnungPotenzreihenentwicklungenKomplexe Zahlen und FunktionenDie ZielgruppenStudierende von IngenieurstudiengängenDer AutorProf. Dr.-Ing. habil. Lutz Nasdala lehrt Mathematik, Technische Mechanik und FEM  an der Hochschule Offenburg. About the Author Prof. Dr.-Ing. habil. Lutz Nasdala lehrt Mathematik, Technische Mechanik und FEM  an der Hochschule Offenburg.

show more...

How to Download?!!!

Just click on START button on Telegram Bot

Free Download Book